source: src/linux/universal/linux-3.18/arch/x86/mm/init.c @ 31885

Last change on this file since 31885 was 31885, checked in by brainslayer, 3 months ago

update

File size: 19.6 KB
Line 
1#include <linux/gfp.h>
2#include <linux/initrd.h>
3#include <linux/ioport.h>
4#include <linux/swap.h>
5#include <linux/memblock.h>
6#include <linux/bootmem.h>      /* for max_low_pfn */
7
8#include <asm/cacheflush.h>
9#include <asm/e820.h>
10#include <asm/init.h>
11#include <asm/page.h>
12#include <asm/page_types.h>
13#include <asm/sections.h>
14#include <asm/setup.h>
15#include <asm/tlbflush.h>
16#include <asm/tlb.h>
17#include <asm/proto.h>
18#include <asm/dma.h>            /* for MAX_DMA_PFN */
19#include <asm/microcode.h>
20
21/*
22 * We need to define the tracepoints somewhere, and tlb.c
23 * is only compied when SMP=y.
24 */
25#define CREATE_TRACE_POINTS
26#include <trace/events/tlb.h>
27
28#include "mm_internal.h"
29
30static unsigned long __initdata pgt_buf_start;
31static unsigned long __initdata pgt_buf_end;
32static unsigned long __initdata pgt_buf_top;
33
34static unsigned long min_pfn_mapped;
35
36static bool __initdata can_use_brk_pgt = true;
37
38/*
39 * Pages returned are already directly mapped.
40 *
41 * Changing that is likely to break Xen, see commit:
42 *
43 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
44 *
45 * for detailed information.
46 */
47__ref void *alloc_low_pages(unsigned int num)
48{
49        unsigned long pfn;
50        int i;
51
52        if (after_bootmem) {
53                unsigned int order;
54
55                order = get_order((unsigned long)num << PAGE_SHIFT);
56                return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
57                                                __GFP_ZERO, order);
58        }
59
60        if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
61                unsigned long ret;
62                if (min_pfn_mapped >= max_pfn_mapped)
63                        panic("alloc_low_pages: ran out of memory");
64                ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
65                                        max_pfn_mapped << PAGE_SHIFT,
66                                        PAGE_SIZE * num , PAGE_SIZE);
67                if (!ret)
68                        panic("alloc_low_pages: can not alloc memory");
69                memblock_reserve(ret, PAGE_SIZE * num);
70                pfn = ret >> PAGE_SHIFT;
71        } else {
72                pfn = pgt_buf_end;
73                pgt_buf_end += num;
74                printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
75                        pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
76        }
77
78        for (i = 0; i < num; i++) {
79                void *adr;
80
81                adr = __va((pfn + i) << PAGE_SHIFT);
82                clear_page(adr);
83        }
84
85        return __va(pfn << PAGE_SHIFT);
86}
87
88/* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
89#define INIT_PGT_BUF_SIZE       (6 * PAGE_SIZE)
90RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
91void  __init early_alloc_pgt_buf(void)
92{
93        unsigned long tables = INIT_PGT_BUF_SIZE;
94        phys_addr_t base;
95
96        base = __pa(extend_brk(tables, PAGE_SIZE));
97
98        pgt_buf_start = base >> PAGE_SHIFT;
99        pgt_buf_end = pgt_buf_start;
100        pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
101}
102
103int after_bootmem;
104
105int direct_gbpages
106#ifdef CONFIG_DIRECT_GBPAGES
107                                = 1
108#endif
109;
110
111static void __init init_gbpages(void)
112{
113#ifdef CONFIG_X86_64
114        if (direct_gbpages && cpu_has_gbpages)
115                printk(KERN_INFO "Using GB pages for direct mapping\n");
116        else
117                direct_gbpages = 0;
118#endif
119}
120
121struct map_range {
122        unsigned long start;
123        unsigned long end;
124        unsigned page_size_mask;
125};
126
127static int page_size_mask;
128
129static void __init probe_page_size_mask(void)
130{
131        init_gbpages();
132
133#if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
134        /*
135         * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
136         * This will simplify cpa(), which otherwise needs to support splitting
137         * large pages into small in interrupt context, etc.
138         */
139        if (direct_gbpages)
140                page_size_mask |= 1 << PG_LEVEL_1G;
141        if (cpu_has_pse)
142                page_size_mask |= 1 << PG_LEVEL_2M;
143#endif
144
145        /* Enable PSE if available */
146        if (cpu_has_pse)
147                cr4_set_bits_and_update_boot(X86_CR4_PSE);
148
149        /* Enable PGE if available */
150        if (cpu_has_pge) {
151                cr4_set_bits_and_update_boot(X86_CR4_PGE);
152                __supported_pte_mask |= _PAGE_GLOBAL;
153        }
154}
155
156#ifdef CONFIG_X86_32
157#define NR_RANGE_MR 3
158#else /* CONFIG_X86_64 */
159#define NR_RANGE_MR 5
160#endif
161
162static int __meminit save_mr(struct map_range *mr, int nr_range,
163                             unsigned long start_pfn, unsigned long end_pfn,
164                             unsigned long page_size_mask)
165{
166        if (start_pfn < end_pfn) {
167                if (nr_range >= NR_RANGE_MR)
168                        panic("run out of range for init_memory_mapping\n");
169                mr[nr_range].start = start_pfn<<PAGE_SHIFT;
170                mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
171                mr[nr_range].page_size_mask = page_size_mask;
172                nr_range++;
173        }
174
175        return nr_range;
176}
177
178/*
179 * adjust the page_size_mask for small range to go with
180 *      big page size instead small one if nearby are ram too.
181 */
182static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
183                                                         int nr_range)
184{
185        int i;
186
187        for (i = 0; i < nr_range; i++) {
188                if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
189                    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
190                        unsigned long start = round_down(mr[i].start, PMD_SIZE);
191                        unsigned long end = round_up(mr[i].end, PMD_SIZE);
192
193#ifdef CONFIG_X86_32
194                        if ((end >> PAGE_SHIFT) > max_low_pfn)
195                                continue;
196#endif
197
198                        if (memblock_is_region_memory(start, end - start))
199                                mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
200                }
201                if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
202                    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
203                        unsigned long start = round_down(mr[i].start, PUD_SIZE);
204                        unsigned long end = round_up(mr[i].end, PUD_SIZE);
205
206                        if (memblock_is_region_memory(start, end - start))
207                                mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
208                }
209        }
210}
211
212static int __meminit split_mem_range(struct map_range *mr, int nr_range,
213                                     unsigned long start,
214                                     unsigned long end)
215{
216        unsigned long start_pfn, end_pfn, limit_pfn;
217        unsigned long pfn;
218        int i;
219
220        limit_pfn = PFN_DOWN(end);
221
222        /* head if not big page alignment ? */
223        pfn = start_pfn = PFN_DOWN(start);
224#ifdef CONFIG_X86_32
225        /*
226         * Don't use a large page for the first 2/4MB of memory
227         * because there are often fixed size MTRRs in there
228         * and overlapping MTRRs into large pages can cause
229         * slowdowns.
230         */
231        if (pfn == 0)
232                end_pfn = PFN_DOWN(PMD_SIZE);
233        else
234                end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
235#else /* CONFIG_X86_64 */
236        end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
237#endif
238        if (end_pfn > limit_pfn)
239                end_pfn = limit_pfn;
240        if (start_pfn < end_pfn) {
241                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
242                pfn = end_pfn;
243        }
244
245        /* big page (2M) range */
246        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
247#ifdef CONFIG_X86_32
248        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
249#else /* CONFIG_X86_64 */
250        end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
251        if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
252                end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
253#endif
254
255        if (start_pfn < end_pfn) {
256                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
257                                page_size_mask & (1<<PG_LEVEL_2M));
258                pfn = end_pfn;
259        }
260
261#ifdef CONFIG_X86_64
262        /* big page (1G) range */
263        start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
264        end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
265        if (start_pfn < end_pfn) {
266                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
267                                page_size_mask &
268                                 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
269                pfn = end_pfn;
270        }
271
272        /* tail is not big page (1G) alignment */
273        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
274        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
275        if (start_pfn < end_pfn) {
276                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
277                                page_size_mask & (1<<PG_LEVEL_2M));
278                pfn = end_pfn;
279        }
280#endif
281
282        /* tail is not big page (2M) alignment */
283        start_pfn = pfn;
284        end_pfn = limit_pfn;
285        nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
286
287        if (!after_bootmem)
288                adjust_range_page_size_mask(mr, nr_range);
289
290        /* try to merge same page size and continuous */
291        for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
292                unsigned long old_start;
293                if (mr[i].end != mr[i+1].start ||
294                    mr[i].page_size_mask != mr[i+1].page_size_mask)
295                        continue;
296                /* move it */
297                old_start = mr[i].start;
298                memmove(&mr[i], &mr[i+1],
299                        (nr_range - 1 - i) * sizeof(struct map_range));
300                mr[i--].start = old_start;
301                nr_range--;
302        }
303
304        for (i = 0; i < nr_range; i++)
305                printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
306                                mr[i].start, mr[i].end - 1,
307                        (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
308                         (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
309
310        return nr_range;
311}
312
313struct range pfn_mapped[E820_X_MAX];
314int nr_pfn_mapped;
315
316static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
317{
318        nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
319                                             nr_pfn_mapped, start_pfn, end_pfn);
320        nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
321
322        max_pfn_mapped = max(max_pfn_mapped, end_pfn);
323
324        if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
325                max_low_pfn_mapped = max(max_low_pfn_mapped,
326                                         min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
327}
328
329bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
330{
331        int i;
332
333        for (i = 0; i < nr_pfn_mapped; i++)
334                if ((start_pfn >= pfn_mapped[i].start) &&
335                    (end_pfn <= pfn_mapped[i].end))
336                        return true;
337
338        return false;
339}
340
341/*
342 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
343 * This runs before bootmem is initialized and gets pages directly from
344 * the physical memory. To access them they are temporarily mapped.
345 */
346unsigned long __init_refok init_memory_mapping(unsigned long start,
347                                               unsigned long end)
348{
349        struct map_range mr[NR_RANGE_MR];
350        unsigned long ret = 0;
351        int nr_range, i;
352
353        pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
354               start, end - 1);
355
356        memset(mr, 0, sizeof(mr));
357        nr_range = split_mem_range(mr, 0, start, end);
358
359        for (i = 0; i < nr_range; i++)
360                ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
361                                                   mr[i].page_size_mask);
362
363        add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
364
365        return ret >> PAGE_SHIFT;
366}
367
368/*
369 * We need to iterate through the E820 memory map and create direct mappings
370 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
371 * create direct mappings for all pfns from [0 to max_low_pfn) and
372 * [4GB to max_pfn) because of possible memory holes in high addresses
373 * that cannot be marked as UC by fixed/variable range MTRRs.
374 * Depending on the alignment of E820 ranges, this may possibly result
375 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
376 *
377 * init_mem_mapping() calls init_range_memory_mapping() with big range.
378 * That range would have hole in the middle or ends, and only ram parts
379 * will be mapped in init_range_memory_mapping().
380 */
381static unsigned long __init init_range_memory_mapping(
382                                           unsigned long r_start,
383                                           unsigned long r_end)
384{
385        unsigned long start_pfn, end_pfn;
386        unsigned long mapped_ram_size = 0;
387        int i;
388
389        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
390                u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
391                u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
392                if (start >= end)
393                        continue;
394
395                /*
396                 * if it is overlapping with brk pgt, we need to
397                 * alloc pgt buf from memblock instead.
398                 */
399                can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
400                                    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
401                init_memory_mapping(start, end);
402                mapped_ram_size += end - start;
403                can_use_brk_pgt = true;
404        }
405
406        return mapped_ram_size;
407}
408
409static unsigned long __init get_new_step_size(unsigned long step_size)
410{
411        /*
412         * Explain why we shift by 5 and why we don't have to worry about
413         * 'step_size << 5' overflowing:
414         *
415         * initial mapped size is PMD_SIZE (2M).
416         * We can not set step_size to be PUD_SIZE (1G) yet.
417         * In worse case, when we cross the 1G boundary, and
418         * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
419         * to map 1G range with PTE. Use 5 as shift for now.
420         *
421         * Don't need to worry about overflow, on 32bit, when step_size
422         * is 0, round_down() returns 0 for start, and that turns it
423         * into 0x100000000ULL.
424         */
425        return step_size << 5;
426}
427
428/**
429 * memory_map_top_down - Map [map_start, map_end) top down
430 * @map_start: start address of the target memory range
431 * @map_end: end address of the target memory range
432 *
433 * This function will setup direct mapping for memory range
434 * [map_start, map_end) in top-down. That said, the page tables
435 * will be allocated at the end of the memory, and we map the
436 * memory in top-down.
437 */
438static void __init memory_map_top_down(unsigned long map_start,
439                                       unsigned long map_end)
440{
441        unsigned long real_end, start, last_start;
442        unsigned long step_size;
443        unsigned long addr;
444        unsigned long mapped_ram_size = 0;
445        unsigned long new_mapped_ram_size;
446
447        /* xen has big range in reserved near end of ram, skip it at first.*/
448        addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
449        real_end = addr + PMD_SIZE;
450
451        /* step_size need to be small so pgt_buf from BRK could cover it */
452        step_size = PMD_SIZE;
453        max_pfn_mapped = 0; /* will get exact value next */
454        min_pfn_mapped = real_end >> PAGE_SHIFT;
455        last_start = start = real_end;
456
457        /*
458         * We start from the top (end of memory) and go to the bottom.
459         * The memblock_find_in_range() gets us a block of RAM from the
460         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
461         * for page table.
462         */
463        while (last_start > map_start) {
464                if (last_start > step_size) {
465                        start = round_down(last_start - 1, step_size);
466                        if (start < map_start)
467                                start = map_start;
468                } else
469                        start = map_start;
470                new_mapped_ram_size = init_range_memory_mapping(start,
471                                                        last_start);
472                last_start = start;
473                min_pfn_mapped = last_start >> PAGE_SHIFT;
474                /* only increase step_size after big range get mapped */
475                if (new_mapped_ram_size > mapped_ram_size)
476                        step_size = get_new_step_size(step_size);
477                mapped_ram_size += new_mapped_ram_size;
478        }
479
480        if (real_end < map_end)
481                init_range_memory_mapping(real_end, map_end);
482}
483
484/**
485 * memory_map_bottom_up - Map [map_start, map_end) bottom up
486 * @map_start: start address of the target memory range
487 * @map_end: end address of the target memory range
488 *
489 * This function will setup direct mapping for memory range
490 * [map_start, map_end) in bottom-up. Since we have limited the
491 * bottom-up allocation above the kernel, the page tables will
492 * be allocated just above the kernel and we map the memory
493 * in [map_start, map_end) in bottom-up.
494 */
495static void __init memory_map_bottom_up(unsigned long map_start,
496                                        unsigned long map_end)
497{
498        unsigned long next, new_mapped_ram_size, start;
499        unsigned long mapped_ram_size = 0;
500        /* step_size need to be small so pgt_buf from BRK could cover it */
501        unsigned long step_size = PMD_SIZE;
502
503        start = map_start;
504        min_pfn_mapped = start >> PAGE_SHIFT;
505
506        /*
507         * We start from the bottom (@map_start) and go to the top (@map_end).
508         * The memblock_find_in_range() gets us a block of RAM from the
509         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
510         * for page table.
511         */
512        while (start < map_end) {
513                if (map_end - start > step_size) {
514                        next = round_up(start + 1, step_size);
515                        if (next > map_end)
516                                next = map_end;
517                } else
518                        next = map_end;
519
520                new_mapped_ram_size = init_range_memory_mapping(start, next);
521                start = next;
522
523                if (new_mapped_ram_size > mapped_ram_size)
524                        step_size = get_new_step_size(step_size);
525                mapped_ram_size += new_mapped_ram_size;
526        }
527}
528
529void __init init_mem_mapping(void)
530{
531        unsigned long end;
532
533        probe_page_size_mask();
534
535#ifdef CONFIG_X86_64
536        end = max_pfn << PAGE_SHIFT;
537#else
538        end = max_low_pfn << PAGE_SHIFT;
539#endif
540
541        /* the ISA range is always mapped regardless of memory holes */
542        init_memory_mapping(0, ISA_END_ADDRESS);
543
544        /*
545         * If the allocation is in bottom-up direction, we setup direct mapping
546         * in bottom-up, otherwise we setup direct mapping in top-down.
547         */
548        if (memblock_bottom_up()) {
549                unsigned long kernel_end = __pa_symbol(_end);
550
551                /*
552                 * we need two separate calls here. This is because we want to
553                 * allocate page tables above the kernel. So we first map
554                 * [kernel_end, end) to make memory above the kernel be mapped
555                 * as soon as possible. And then use page tables allocated above
556                 * the kernel to map [ISA_END_ADDRESS, kernel_end).
557                 */
558                memory_map_bottom_up(kernel_end, end);
559                memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
560        } else {
561                memory_map_top_down(ISA_END_ADDRESS, end);
562        }
563
564#ifdef CONFIG_X86_64
565        if (max_pfn > max_low_pfn) {
566                /* can we preseve max_low_pfn ?*/
567                max_low_pfn = max_pfn;
568        }
569#else
570        early_ioremap_page_table_range_init();
571#endif
572
573        load_cr3(swapper_pg_dir);
574        __flush_tlb_all();
575
576        early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
577}
578
579/*
580 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
581 * is valid. The argument is a physical page number.
582 *
583 *
584 * On x86, access has to be given to the first megabyte of RAM because that
585 * area traditionally contains BIOS code and data regions used by X, dosemu,
586 * and similar apps. Since they map the entire memory range, the whole range
587 * must be allowed (for mapping), but any areas that would otherwise be
588 * disallowed are flagged as being "zero filled" instead of rejected.
589 * Access has to be given to non-kernel-ram areas as well, these contain the
590 * PCI mmio resources as well as potential bios/acpi data regions.
591 */
592int devmem_is_allowed(unsigned long pagenr)
593{
594        if (page_is_ram(pagenr)) {
595                /*
596                 * For disallowed memory regions in the low 1MB range,
597                 * request that the page be shown as all zeros.
598                 */
599                if (pagenr < 256)
600                        return 2;
601
602                return 0;
603        }
604
605        /*
606         * This must follow RAM test, since System RAM is considered a
607         * restricted resource under CONFIG_STRICT_IOMEM.
608         */
609        if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
610                /* Low 1MB bypasses iomem restrictions. */
611                if (pagenr < 256)
612                        return 1;
613
614                return 0;
615        }
616
617        return 1;
618}
619
620void free_init_pages(char *what, unsigned long begin, unsigned long end)
621{
622        unsigned long begin_aligned, end_aligned;
623
624        /* Make sure boundaries are page aligned */
625        begin_aligned = PAGE_ALIGN(begin);
626        end_aligned   = end & PAGE_MASK;
627
628        if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
629                begin = begin_aligned;
630                end   = end_aligned;
631        }
632
633        if (begin >= end)
634                return;
635
636        /*
637         * If debugging page accesses then do not free this memory but
638         * mark them not present - any buggy init-section access will
639         * create a kernel page fault:
640         */
641#ifdef CONFIG_DEBUG_PAGEALLOC
642        printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
643                begin, end - 1);
644        set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
645#else
646        /*
647         * We just marked the kernel text read only above, now that
648         * we are going to free part of that, we need to make that
649         * writeable and non-executable first.
650         */
651        set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
652        set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
653
654        free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
655#endif
656}
657
658void free_initmem(void)
659{
660        free_init_pages("unused kernel",
661                        (unsigned long)(&__init_begin),
662                        (unsigned long)(&__init_end));
663}
664
665#ifdef CONFIG_BLK_DEV_INITRD
666void __init free_initrd_mem(unsigned long start, unsigned long end)
667{
668#ifdef CONFIG_MICROCODE_EARLY
669        /*
670         * Remember, initrd memory may contain microcode or other useful things.
671         * Before we lose initrd mem, we need to find a place to hold them
672         * now that normal virtual memory is enabled.
673         */
674        save_microcode_in_initrd();
675#endif
676
677        /*
678         * end could be not aligned, and We can not align that,
679         * decompresser could be confused by aligned initrd_end
680         * We already reserve the end partial page before in
681         *   - i386_start_kernel()
682         *   - x86_64_start_kernel()
683         *   - relocate_initrd()
684         * So here We can do PAGE_ALIGN() safely to get partial page to be freed
685         */
686        free_init_pages("initrd", start, PAGE_ALIGN(end));
687}
688#endif
689
690void __init zone_sizes_init(void)
691{
692        unsigned long max_zone_pfns[MAX_NR_ZONES];
693
694        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
695
696#ifdef CONFIG_ZONE_DMA
697        max_zone_pfns[ZONE_DMA]         = MAX_DMA_PFN;
698#endif
699#ifdef CONFIG_ZONE_DMA32
700        max_zone_pfns[ZONE_DMA32]       = MAX_DMA32_PFN;
701#endif
702        max_zone_pfns[ZONE_NORMAL]      = max_low_pfn;
703#ifdef CONFIG_HIGHMEM
704        max_zone_pfns[ZONE_HIGHMEM]     = max_pfn;
705#endif
706
707        free_area_init_nodes(max_zone_pfns);
708}
709
710DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
711#ifdef CONFIG_SMP
712        .active_mm = &init_mm,
713        .state = 0,
714#endif
715        .cr4 = ~0UL,    /* fail hard if we screw up cr4 shadow initialization */
716};
717EXPORT_SYMBOL_GPL(cpu_tlbstate);
Note: See TracBrowser for help on using the repository browser.